

Synthesis of 3'-Deoxy-5'-S-ethyl-5'-thio-β-D-*erythro*-pentofuranosylthymine as Potential Antitumor Agent

Najim A. Al-Masoudi

Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-78434 Konstanz, Germany

Received 13 April 1999; accepted 30 April 1999

Absract: The title compound 6 was prepared from the key sugarintermediate 3-deoxy-1,2- \mathcal{O} -isopropylidene- α -D-erythro-pentofuranosylthymine (1) via five steps. Alternatively, 6 was synthesized from the nucleoside 3'-deoxy- β -D-erythro-pentofuranosylthymine (7) in two steps. © 1999 Elsevier Science Ltd. All rights reserved.

Key words: Antitumor activity, Glycosylation, Hilbert-Johnson reaction, Nucleosides, Thiosugars

The cytoplasmic-thymidine kinase (C-TK) is described as the essential precursor in human tumor cell lines. It has been suggested that the use of a drug which blocks *de novo* TMP biosynthesis and then selectively inhibit the C-TK might offer the possibility for effective neoplastic chemotherapy. Among several 5'-alkylthionucleosides, the 5'-ethylthio-5'-deoxythymidine has been found to be a noncompetitive inhibitor of the C-TK. Some other 5'-alkylthionucleosides were found to exhibit activity as antitumor or antiviral agents. Agrofoglio and co-workers reported recently the synthesis of some 2',3'-didehydro-3'-deoxy-5'-thioether-thymidines with their preliminary antitumor evaluation which did not show any significant activity except 5'-ethylthio analogue with a modrate activity on the L1210 Leukemia cells. These interesting nucleosides prompted us to synthesize the 3'-deoxy-5'-S-ethyl-5'-thio-β-D-*erythro*-pentofuranosylthymine (6) as promising potential antitumor agent.

Reaction of 1^6 , which prepared from D-xylose *via* six steps, with p-toluenesulphonyl chloride at room temperature afforded the crystalline tosylate $2.^6$ Treatment of 3 at ~ 5 °C with an excess of sodium ethylthiolate in DMF gave the 5-ethylthio analogue in 95% yield, as syrup. Subsequent treatment with acetic anhydride in HOAc and catalytic H_2SO_4 provided 4 as an α/β anomeric mixture. The silylated thymine was condensed with 4 under Hilbert-Johnson reaction as developed by Vorbrüggen condition using trimethylsilyl triflate in dry 1,2-dicholoethane to give, after chromatographic purification, 5 in 80% yield. Deblocking of 5 with 16% methanolic ammonia afforded the title nucleoside 6^8 in 91% yield (Scheme 1).

Alternatively, 6 was prepared from the previously reported free nucleoside 7.9 Thus, 7 was obtained, according to our procedure, from deblocking of the 3'-deoxy-5'-O-toluoyl- β -D-erythro-pentofuranosylthymine. Selective tosylation of 7 at the 5'-position, at low temperature, afforded the corresponding crystalline 5'-O-tosylate derivative 8 in 45% yield which was converted into ist 5'-ethylthionucleoside analogue 6 in 50% yield by treatment with an excess of sodium ethylthiolate at \sim 5 °C in DMF. The anticancer activity of 6 is under evaluation.

Acknowledgment: We would like to thank Dr. A. Geyer and Mr. K. Hägele, Fakultät für Chemie an der Universität Konstanz, Germany for the 2D NMR and the mass spectra measurments, respectively.

References and Notes

- 1. Girard, F.; Leonce; S.; Agrofoglio, L. A. Tetrahedron Lett. 1997, 38, 7535-7538, references therein cited.
- a) Hampton, A.; Chawala, R. R.; Kappler, F. J. Med. Chem. 1982, 25, 644-649.
 b) Hampton, A.; Kappler, F.; Chawala, R. R. J. Med. Chem. 1979, 22, 621-631.
- 3. Rosowsky, A.; Kim, S.-H.; Trites, D.; Wick, M. J. Med. Chem. 1982, 25, 1034-1040.

(v) NH3/MeOH; (vi) TsCl/pyridine; (vii) NaSEt/DMF/0 °C.

- Harada, K.; Matulic-Adamic, J.; Price, R. W.; Schinazi, R. F.; Watanabe, K. A.; Fox, J. J. J. Med. Chem. 1987, 30, 226-229.
- 5. Rao, T. S., Jayaraman, K.; Durland, R. H.; Revanker, G. R. Nucleosides Nucleotides 1994, 13, 255-273.
- 6. Al-Masoudi, N. A. Sulfur Lett. 1999, in press.
- a) Vorbrüggen, H.; Bennua, B. Chem. Ber. 1981, 114, 1279-1286. b) Vorbrüggen, H.; Bennua, B. Tetrahedron Lett. 1978, 19, 1339-1342. c) Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654, 3660, 3664, 3672-3673.
- 8. Selected spectroscopic data of 6: 1H NMR (DMSO-d₆): δ 9.10 (s, 1H, NH); 7.50 (s, 1H, H-6); 5.67 (d, 1H, $J_{1^{\circ},2^{\circ}}$ 2.0 Hz, H-1'); 4.57 (ddd, 1H, $J_{2^{\circ},3^{\circ}}$ < 1.0 Hz, $J_{2^{\circ},3^{\circ}}$ 4.6 Hz, H-2'); 4.32 (m, 1H, $J_{4^{\circ},5^{\circ}}$ 4.8 Hz, H-4'); 2.70 (dd, 1H, $J_{4^{\circ},5^{\circ}}$ 6.4 Hz, H-5'); 2.63 (dd, 1H, $J_{5^{\circ},5^{\circ}}$ 12.0 Hz, H-5''); 2.60 (q, 2H, J 7.4 Hz, CH_2CH_3); 2.03 (dd, 1H, $J_{3^{\circ},4^{\circ}}$ 4.4 Hz, H-3''); 1.64 (ddd, 1H, $J_{3^{\circ},4^{\circ}}$ 10.4 Hz, $J_{3^{\circ},3^{\circ}}$ 13.5 Hz, H-3'); 1.61 (t, 3H, CH_2CH_3). ^{13}C NMR (DMSO-d₆): δ 163.7 (C-4); 150.3 (C-2); 136.3 (C-6); 108.3 (C-5); 90.8 (C-1'); 78.9 (C-4'); 74.6 (C-2'); 33.9 (C-3'); 26.8 (CH_2CH_3); 14.6 (CH_2CH_3); 12.2 (C_5-CH_3).
- 9. Rizzo, C. J.; Dougherty, J. P.; Breslow, R. Tetrahedron Lett. 1992, 33, 4129-4132.
- 10. All new compounds were purified by column chromatography and characterized by ¹H NMR (600 MHz, HMQC, COSY, ROESY), ¹³C NMR and mass spectroscopy and gave correct elemental analysis (± 0.5%).